261 research outputs found

    Multimode theory of measurement-induced non-Gaussian operation on wideband squeezed light

    Full text link
    We present a multimode theory of non-Gaussian operation induced by an imperfect on/off-type photon detector on a splitted beam from a wideband squeezed light. The events are defined for finite time duration TT in the time domain. The non-Gaussian output state is measured by the homodyne detector with finite bandwidh BB. Under this time- and band-limitation to the quantm states, we develop a formalism to evaluate the frequency mode matching between the on/off trigger channel and the conditional signal beam in the homodyne channel. Our formalism is applied to the CW and pulsed schemes. We explicitly calculate the Wigner function of the conditional non-Gaussian output state in a realistic situation. Good mode matching is achieved for BT\alt1, where the discreteness of modes becomes prominant, and only a few modes become dominant both in the on/off and the homodyne channels. If the trigger beam is projected nearly onto the single photon state in the most dominant mode in this regime, the most striking non-classical effect will be observed in the homodyne statistics. The increase of BTBT and the dark counts degrades the non-classical effect.Comment: 20 pages, 14 figures, submitted to Phys. Rev.

    Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers

    Full text link
    We present a theoretical and experimental investigation of the emission characteristics and the flux of photon pairs generated by spontaneous parametric downconversion in quasi-phase matched bulk crystals for the use in quantum communication sources. We show that, by careful design, one can attain well defined modes close to the fundamental mode of optical fibers and obtain high coupling efficiencies also for bulk crystals, these being more easily aligned than crystal waveguides. We distinguish between singles coupling, conditional coincidence, and pair coupling, and show how each of these parameters can be maximized by varying the focusing of the pump mode and the fiber-matched modes using standard optical elements. Specifically we analyze a periodically poled KTP-crystal pumped by a 532 nm laser creating photon pairs at 810 nm and 1550 nm. Numerical calculations lead to coupling efficiencies above 94% at optimal focusing, which is found by the geometrical relation L/z_R to be ~ 1 to 2 for the pump mode and ~ 2 to 3 for the fiber-modes, where L is the crystal length and z_R is the Rayleigh-range of the mode-profile. These results are independent on L. By showing that the single-mode bandwidth decreases as 1/L, we can therefore design the source to produce and couple narrow bandwidth photon pairs well into the fibers. Smaller bandwidth means both less chromatic dispersion for long propagation distances in fibers, and that telecom Bragg gratings can be utilized to compensate for broadened photon packets--a vital problem for time-multiplexed qubits. Longer crystals also yield an increase in fiber photon flux proportional to sqrt{L}, and so, assuming correct focusing, we can only see advantages using long crystals.Comment: 19 pages, 15 figures, ReVTeX4, minor revisio

    Single-qubit optical quantum fingerprinting

    Full text link
    We analyze and demonstrate the feasibility and superiority of linear optical single-qubit fingerprinting over its classical counterpart. For one-qubit fingerprinting of two-bit messages, we prepare `tetrahedral' qubit states experimentally and show that they meet the requirements for quantum fingerprinting to exceed the classical capability. We prove that shared entanglement permits 100% reliable quantum fingerprinting, which will outperform classical fingerprinting even with arbitrary amounts of shared randomness.Comment: 4 pages, one figur

    Shaping the waveform of entangled photons

    Full text link
    We demonstrate experimentally the tunable control of the joint spectrum, i.e. waveform and degree of frequency correlations, of paired photons generated in spontaneous parametric downconversion. This control is mediated by the spatial shape of the pump beam in a type-I noncollinear configuration. We discuss the applicability of this technique to other sources of frequency entangled photons, such as electromagnetically induced Raman transitions.Comment: 5 Pages, 4 Figure

    On the relationship between pump chirp and single-photon chirp in spontaneous parametric downconversion

    Full text link
    We study the chronocyclic character, i.e. the joint temporal and spectral properties, of the single-photon constituents of photon pairs generated by spontaneous parametric down conversion. In particular we study how single photon properties, including purity and single-photon chirp, depend on photon pair properties, including the type of signal-idler spectral and correlations and the level of pump chirp.Comment: 13 pages, 6 figure

    Subnanosecond spectral diffusion of a single quantum dot in a nanowire

    Get PDF
    We have studied spectral diffusion of the photoluminescence of a single CdSe quantum dot inserted in a ZnSe nanowire. We have measured the characteristic diffusion time as a function of pumping power and temperature using a recently developed technique [G. Sallen et al, Nature Photon. \textbf{4}, 696 (2010)] that offers subnanosecond resolution. These data are consistent with a model where only a \emph{single} carrier wanders around in traps located in the vicinity of the quantum dot

    Single-photon excitation of a coherent state: catching the elementary step of stimulated light emission

    Full text link
    When a single quantum of electromagnetic field excitation is added to the same spatio-temporal mode of a coherent state, a new field state is generated that exhibits intermediate properties between those of the two parents. Such a single-photon-added coherent state is obtained by the action of the photon creation operator on a coherent state and can thus be regarded as the result of the most elementary excitation process of a classical light field. Here we present and describe in depth the experimental realization of such states and their complete analysis by means of a novel ultrafast, time-domain, quantum homodyne tomography technique clearly revealing their non-classical character.Comment: 9 pages, 9 figures. Accepted for publication in Phys. Rev.

    Subnanosecond spectral diffusion measurement using photon correlation

    Get PDF
    Spectral diffusion is a result of random spectral jumps of a narrow line as a result of a fluctuating environment. It is an important issue in spectroscopy, because the observed spectral broadening prevents access to the intrinsic line properties. However, its characteristic parameters provide local information on the environment of a light emitter embedded in a solid matrix, or moving within a fluid, leading to numerous applications in physics and biology. We present a new experimental technique for measuring spectral diffusion based on photon correlations within a spectral line. Autocorrelation on half of the line and cross-correlation between the two halves give a quantitative value of the spectral diffusion time, with a resolution only limited by the correlation set-up. We have measured spectral diffusion of the photoluminescence of a single light emitter with a time resolution of 90 ps, exceeding by four orders of magnitude the best resolution reported to date

    Mode-coupling theory for structural and conformational dynamics of polymer melts

    Full text link
    A mode-coupling theory for dense polymeric systems is developed which unifyingly incorporates the segmental cage effect relevant for structural slowing down and polymer chain conformational degrees of freedom. An ideal glass transition of polymer melts is predicted which becomes molecular-weight independent for large molecules. The theory provides a microscopic justification for the use of the Rouse theory in polymer melts, and the results for Rouse-mode correlators and mean-squared displacements are in good agreement with computer simulation results.Comment: 4 pages, 3 figures, Phys. Rev. Lett. in pres
    • …
    corecore